INDUSTRIAL ENGINEERING TECHNOLOGY

Program Description

The Industrial Engineering Technology program provides a bachelor's completion degree option with the skills and theoretical knowledge needed to advance graduates into engineering and management positions in their respective industries. Graduates from this program will be prepared to take on new roles such as: industrial engineer, manufacturing engineer, quality engineer, and process engineer.

The course of study includes: advanced mathematics, statistics, manufacturing processes, engineering economics, quality, lean manufacturing, Six Sigma, industrial automation, and operations management.

The program also incorporates a senior capstone project in its final semester that gives students the chance to demonstrate real-world industrial engineering experience. Arts & Sciences curriculum supports the technical coursework by enhancing the students' communication, mathematics, and critical thinking skills.

Dunwoody College of Technology: a non-profit, private technical college since 1914.

Credential Earned	BS Degree
Classes Offered | Evening
Length of Program | 2 years (4 semesters)
Available Starts | Fall Semester; Spring Semester
Accreditation | Engineering Technology Accreditation Commission (ETAC) of ABET

Degree Requirements

Transfer credits from AAS or AS degree; requires a transfer evaluation

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>IENG1120</td>
<td>Introduction to Engineering</td>
</tr>
<tr>
<td>IENG3115</td>
<td>Statistical Quality Control</td>
</tr>
<tr>
<td>IENG3125</td>
<td>Manufacturing Processes Theory</td>
</tr>
<tr>
<td>IENG3130</td>
<td>Manufacturing Processes Lab</td>
</tr>
<tr>
<td>IENG3145</td>
<td>Ethics & Social Responsibility for Engineering</td>
</tr>
<tr>
<td>IENG3215</td>
<td>Project Management</td>
</tr>
<tr>
<td>IENG3225</td>
<td>Lean Systems Theory</td>
</tr>
<tr>
<td>IENG3230</td>
<td>Lean Systems Lab</td>
</tr>
<tr>
<td>IENG3235</td>
<td>Quality Systems</td>
</tr>
<tr>
<td>IENG4111</td>
<td>Ergonomics & Work Measurement</td>
</tr>
<tr>
<td>IENG4115</td>
<td>Supply Chain Management</td>
</tr>
<tr>
<td>IENG4125</td>
<td>Production Planning & Control</td>
</tr>
<tr>
<td>IENG4135</td>
<td>Operations Management</td>
</tr>
<tr>
<td>IENG4145</td>
<td>Engineering Economic Analysis</td>
</tr>
<tr>
<td>IENG4210</td>
<td>Simulation Modeling & Analysis</td>
</tr>
<tr>
<td>IENG4225</td>
<td>Industrial Automation Theory</td>
</tr>
<tr>
<td>IENG4235</td>
<td>Industrial Automation Lab</td>
</tr>
<tr>
<td>IENG4295</td>
<td>Senior Capstone</td>
</tr>
<tr>
<td>MATH1700</td>
<td>Precalculus</td>
</tr>
<tr>
<td>MATH1810</td>
<td>Calculus I</td>
</tr>
<tr>
<td>MATH1820</td>
<td>Calculus II</td>
</tr>
<tr>
<td>WRIT4020</td>
<td>Capstone Technical Writing</td>
</tr>
<tr>
<td>PHYS1810</td>
<td>Calculus-Based Physics</td>
</tr>
</tbody>
</table>

Common Job Titles

- Manufacturing Engineer
- Industrial Engineer
- Quality Engineer

Recent Employers

- St. Jude
- Sil-Pro
- General Mills
- Andersen Corporation
- Cardiovascular Systems, Inc.

Salary Data

- $87,200
- Annual Average Salary

Placement Rate

100%

** Data reflects placement for AY2015-16 graduates indicating employment in their field of study within 6 months following graduation.

Full data calculations are available for review during College open hours Monday through Friday 8 a.m. to 4 p.m. CT at Career Services or contact careerservices@dunwoody.edu.

AY2017-18 Revised: 3.29.17

How to Apply

dunwoody.edu
612.374.5800
info@dunwoody.edu
Course Descriptions

IENG1120 Introduction to Engineering, 2 cr.
Explore major topics in Engineering, the various fields in which engineers are utilized, and opportunities for applying engineering skills and tools.

IENG3115 Statistical Quality Control, 2 cr.
Apply statistical methods to study the quality of manufactured products, determining how to reduce the time required to produce the product and ensure the quality of the product. Topics include probability and statistics, control charts, acceptance criteria and sampling, and case studies.

IENG3125 Manufacturing Processes Theory, 2 cr.
Examine various manufacturing processes and materials used in product development and manufacturing. Each process will be covered from a technical perspective, with an emphasis placed on how multiple processes can be linked together.

IENG3130 Monitoring Processes Lab, 1 cr.
Hands-on application of various manufacturing processes and materials used in product development and manufacturing. Several manufacturing steps, such as computer aided design, machining, welding, and an electronic control circuit will be used to design a product.

IENG3145 Ethics & Social Responsibility for Engineering, 2 cr.
The theory and application of ethics and social responsibility as it applies to engineering practice. Topics include engineering ethics codes, cultural and diversity issues, environmental concerns, and intellectual property.

IENG3215 Project Management, 2 cr.
Examine the methods and tools used for effective management of engineering projects. Topics include the analytical methods used to budget, schedule, and control projects, as well as risk management, team leadership, and communication.

IENG3225 Lean Systems Theory, 2 cr.
Investigate the history and evolution of lean systems and current day applications to manufacturing, service, and business. Utilize fundamental lean philosophies, culture transformation, and change management techniques in the application of lean tools.

IENG3230 Lean Systems Lab, 1 cr.
Apply fundamental lean philosophies and tools to manufacturing, service, and business. Understand the role of culture transformation and change management techniques in the application of lean tools.

IENG3235 Quality Systems, 2 cr.
Investigate several quality concepts used to improve quality, decrease production times, and improve customer satisfaction. Topics include the concepts of Total Quality Management (TQM), ISO9001, Six-Sigma, PDCA, FMEA, and DOE as they relate to industrial engineering topics.

IENG4111 Ergonomics & Work Measurement, 3 cr.
Examine the fundamentals of ergonomics and work measurements. Topics include analysis tools, activity charts, line balancing, time and motion studies, and workplace design.

IENG4115 Supply Chain Management, 2 cr.
Explain the fundamentals of supply chain management. Topics include the supply chain network, system integration, supply chain strategies, and challenges in managing the supply chain.

IENG4125 Production Planning & Control, 2 cr.
Utilize aspects of management to maximize productivity in a factory or service environment. Topics include sales & operations planning, inventory and capacity management, material requirements planning, and the theory of constraints.

IENG4135 Operations Management, 2 cr.
Explain the planning, organization, coordination, and control of the resources needed to produce a company’s goods and services. Topics include strategy alignment, capacity planning, aggregate plans, and the importance of social responsibility.

IENG4145 Engineering Economic Analysis, 2 cr.
The concepts of finance and economics within the engineering environment. Analyze costs, risk, funding options, economic return on investment, and legal and environmental concerns.

IENG4210 Simulation Modeling & Analysis, 3 cr.
Utilize simulation to create, analyze, and evaluate realistic models of real-world environments. Topics include Monte Carlo simulation, queuing theory, selecting input distributions, animation in simulation, and evaluating simulation output.

IENG4225 Industrial Automation Theory, 2 cr.
Investigate several automated processes used in manufacturing, service, and business processes. Topics include automated work systems, safety, and design of systems.

IENG4235 Industrial Automation Lab, 1 cr.
Apply several automated processes used in manufacturing, service, and business processes. Topics include automated work systems, safety, and design of systems.

IENG4295 Senior Capstone, 4 cr.
Demonstrate overall content knowledge of the program outcomes through a major project. Conduct a final presentation of the project and explain how it applies to the engineering program outcomes.

MATH1700 Precalculus, 3 cr.
Preparation for Calculus. Topics include understanding functions from symbolic, tabular, and graphical perspectives. Explore function transformations and composition, polynomial functions, rational polynomial functions, trigonometric functions, exponential functions, and conic sections. The focus is on problem solving using mathematical models to represent real world situations.

MATH1810 Calculus I, 3 cr.
The fundamental tool used by engineers and scientists to determine critical measurements, such as maximums, minimums and allowable rates of change. Computer software will enable the application of limits, derivatives, transcendental functions, implicit differentiation and related rates.

WRIT4020 Capstone Technical Writing, 2 cr.
Research, plan, and organize professional documents for the capstone project. Topics include assessment techniques, special audience considerations, professional speaking skills, and presentation aids.

MATH1820 Calculus II, 3 cr.
The fundamental tool used by engineers and scientists to determine critical measurements, such as calculating the area under curves or the capacities inside of complex geometries. Computer software will enable the application of the definite integral, the fundamental theorem of calculus, applications of integration, and numerical methods of integration.

PHYS1810 Calculus-Based Physics , 3 cr.
Introduction to mechanics using differential and integral calculus as a foundation. Topics include kinematics and dynamics of linear motion, static equilibrium, the conservation of energy and momentum, mechanics of solids and fluids, and thermodynamics.